- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Broyles, Christopher (1)
-
Chen, Ryan (1)
-
Chen, Yulin (1)
-
Cheng, Wenting (1)
-
Eo, Yun Suk (1)
-
Gould, Shannon L (1)
-
Lin, Wanyue (1)
-
Liu, Jieyi (1)
-
Ran, Sheng (1)
-
Regmi, Prakash (1)
-
Siddiquee, Hasan (1)
-
Sun, Kai (1)
-
Tan, Hengxin (1)
-
Wan, Xiaohan (1)
-
Wu, Dingsong (1)
-
Wu, Yuchen (1)
-
Xiao, Leyan (1)
-
Xu, Qiaozhi (1)
-
Yan, Binghai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The resurgence of interest in Kondo insulators has been driven by two major mysteries: the presence of metallic surface states and the observation of quantum oscillations. To further explore these mysteries, it is crucial to investigate another similar system beyond the two existing ones, SmB6and YbB12. Here, we address this by reporting on a Kondo insulator, U3Bi4Ni3. Our transport measurements reveal that a surface state emerges below 250 kelvin and dominates transport properties below 150 kelvin, which is well above the temperature scale of SmB6and YbB12. At low temperatures, the surface conductivity is about one order of magnitude higher than the bulk. The robustness of the surface state indicates that it is inherently protected. The similarities and differences between U3Bi4Ni3and the other two Kondo insulators will provide valuable insights into the nature of metallic surface states in Kondo insulators and their interplay with strong electron correlations.more » « lessFree, publicly-accessible full text available March 21, 2026
An official website of the United States government
